Enhancement of electrical bistability through semiconducting nanoparticles for organic memory applications.

نویسندگان

  • Bikas C Das
  • Amlan J Pal
چکیده

We report that an enhancement in electrical bistability in devices based on organic molecules can be achieved by the introduction of semiconducting nanoparticles. Here, devices based on alternate layers of a dye in the xanthene class and CdSe nanoparticles have been compared with devices based on the individual components. Results from dye/CdSe devices have yielded an appreciable enhancement in electrical bistability compared with those based on the dye or the nanoparticles. The enhancement is due to augmented carrier transport through the nanoparticles to the dye that consequently undergoes a change in its conformation, having a higher conductivity. We have evidenced read-only and random-access memory applications in the dye/nanoparticle hybrid system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of Bistability in Nonlinear Chalcogenide Fiber Bragg Grating for All Optical Switch and Memory Applications

We solve the coupled mode equations governing the chalcogenide nonlinear fiber Bragg gratings (FBGs) numerically, and obtain the bistability characteristics. The characteristics of the chalcogenide nonlinear FBGs such as: switching threshold intensity, bistability interval and on-off switching ratio are studied. The effects of FBG length and its third order nonlinear refractive index on FBG cha...

متن کامل

Electrical bistability in a composite of polymer and barium titanate nanoparticles.

Growth in the use of organic materials in the fabrication of electronic devices is on the rise. Recently, some attempts have been undertaken to manufacture polymer memory devices. Such devices are fabricated by depositing a blend (an admixture of organic polymer, small organic molecules and nanoparticles) between two metal electrodes. These devices show two electrical conductivity states ('high...

متن کامل

A Brief Review of the Synthesis of ZnO Nanoparticles for Biomedical Applications

Carbon-based chemical substances persistence can contribute to adverse health impacts on human lives. It is essential to overcome for treatment purposes. The semiconducting metal oxide is Zinc Oxide (ZnO), which has excellent biocompatibility, good chemical stability, selectivity, sensitivity, non-toxicity, and fast electron transfer characteristics. The ZnO nanoparticles are more efficient com...

متن کامل

Optimization of Non-volatile Memory Cell and Energy Consumption in Robot Systems by Synthesized Silicon Nanoparticles via Electrical Discharge

In this paper, we propose to optimize manufacturing methods of memory cells by produced silicon nanoparticles via electrical spark discharge of silicon electrodes in water to reduce the energy consumption for low power applications. The pulsed spark discharge with the peak current of 60 A and a duration of a single discharge pulse of 60 µs was used in our experiment. The structure, morphology, ...

متن کامل

Programmable polymer thin film and non-volatile memory device.

Building on the success of organic electronic devices, such as light-emitting diodes and field-effect transistors, procedures for fabricating non-volatile organic memory devices are now being explored. Here, we demonstrate a novel organic memory device fabricated by solution processing. Programmable electrical bistability was observed in a device made from a polystyrene film containing gold nan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Philosophical transactions. Series A, Mathematical, physical, and engineering sciences

دوره 367 1905  شماره 

صفحات  -

تاریخ انتشار 2009